

Thank You!

Thank you for downloading this resource from TPT. I appreciate your support. If you would like to contact me with any questions or concerns, feel free to reach out to <u>thewallsscience@gmail.com</u>.

Terms of Use

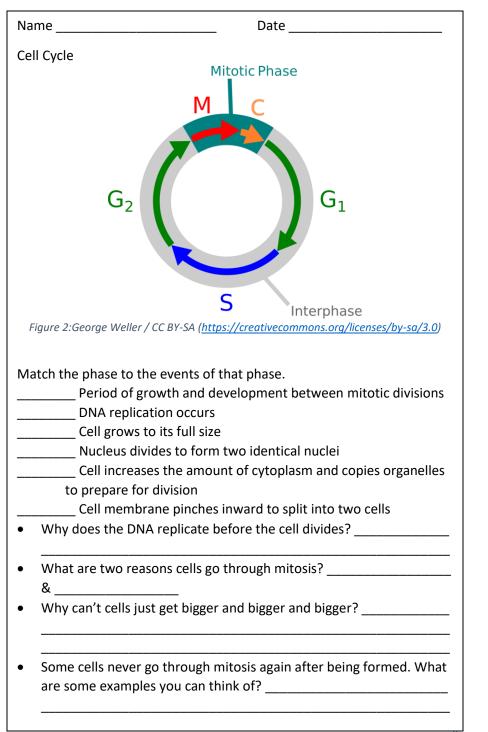
Heather Walls' Terms of Use: By purchasing this product, the purchaser receives a limited individual license to reproduce the product for single classroom use only. The license is not intended for use by organizations or multiple uses including, but not limited to school districts, schools, or multiple teachers within the same content area or grade level. This resource should not be shared with colleagues, used by an entire grade level or content area, or by school district without purchasing the proper number of licenses. No part of this publication may be reproduced, distributed, or transmitted without written permission from the author. This includes posting this product on the internet in any form including class, school, or personal websites or shared networks. Doing so violates the Digital Millennium Copyright Act.

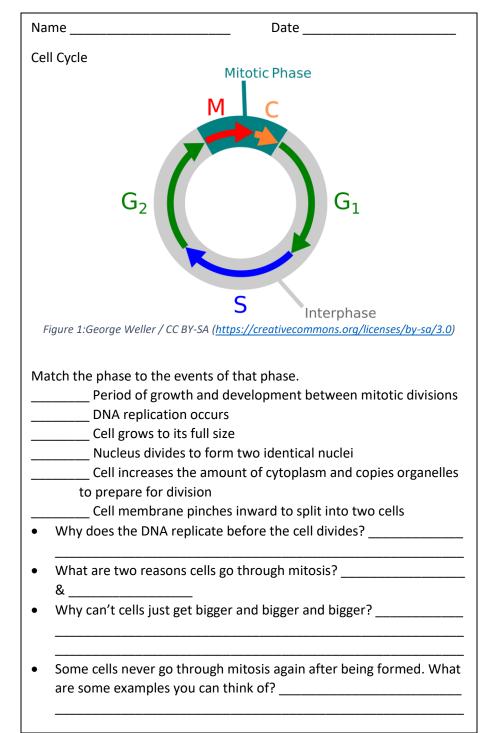
You are welcome to pin this product or share pictures of your students using the product if you include a link back to the original product on TPT.

Name Date	Name
DNA Structure & Replication	DNA Structure
Label the following parts of DNA: hydrogen bonds sugar nucleotide nitrogen base phosphate base pair	Label the followin hydrogen bonds nitrogen base
	1
244.	2
3 5 6	3
 What are the sides of the DNA composed of? & 	7. What are t &
 8. What are the "rungs" of the DNA "ladder" composed of? 	8. What are t
9. What is the shape of DNA?	9. What is the
10. Write the complementary base sequence to the following sequence. A T G A C C T G A	10. Write the o A T G A
11. Place the events of DNA replication in order:	11. Place the e
a DNA polymerase attaches to the primer	a
b Okazaki fragments are glued together by ligase	b
c DNA helicase breaks the hydrogen bonds and	C
unwinds DNA	un
dDNA polymerase adds new nucleotides in a 5' to 3'	d
direction	dir
e Replication fork forms	e
12. Why does DNA replicate before a cell divides?	12. Why does
a. To ensure both cells are genetically different	а. То
b. To ensure both cells are genetically identical	b. To
c. To ensure each cell gets half the genetic information	с. То

ame	Date
NA Structu	ure & Replication
abel the follo	wing parts of DNA:
ydrogen bon	ids sugar nucleotide
itrogen base	phosphate base pair
1.	
••	
2.	
2	
	-5
3	
What ar	e the sides of the DNA composed of?
	re the "rungs" of the DNA "ladder" composed of?
wildt di	e the rungs of the DNA ladder composed of:
	the shape of DNA?
	the shape of DNA?
	A C C T G A
AIG	АССТВА
	e events of DNA replication in order:
	-
	DNA polymerase attaches to the primer
b.	Okazaki fragments are glued together by ligase
	DNA helicase breaks the hydrogen bonds and
	unwinds DNA
d.	DNA polymerase adds new nucleotides in a 5' to 3'
	direction
e.	Replication fork forms
. Why do	es DNA replicate before a cell divides?
a.	To ensure both cells are genetically different
	To ensure both cells are genetically identical
	To ensure each cell gets half the genetic information

Name	Date	Name	Date
DNA Scientists		DNA Scientists	
Match the followin	ng scientists to our understanding of DNA	Match the follow	wing scientists to our understanding of DNA
 A. Erwin Char B. Rosalind Fr C. Maurice W D. Watson & E. Oswald Av F. Hershey & 	ranklin /ilkins Crick rery	 A. Erwin Cl B. Rosaling C. Maurice D. Watson E. Oswald F. Hershey 	d Franklin e Wilkins & Crick Avery
1 Worke	ed in x-ray crystallography; took Photo 51 of DNA	1Wor	rked in x-ray crystallography; took Photo 51 of DNA
2 Detern	nined that the percentage of A always equaled that of	2 Dete	ermined that the percentage of A always equaled that of
T and the perc	entage of G was equaled to C	T and the pe	ercentage of G was equaled to C
3 First is	olated DNA as the material of genes and	3 First	t isolated DNA as the material of genes and
chromosomes		chromosom	ies
4 Also w	orked on taking pictures of DNA, shared Nobel Prize	4 Also	worked on taking pictures of DNA, shared Nobel Prize
for discovery o	of structure	for discover	y of structure
5Credite	ed with discovering the structure of DNA	5Cred	lited with discovering the structure of DNA
6 Confirm	med that DNA was the genetic material of life	6 Con	firmed that DNA was the genetic material of life
7. In your opinior	n, which scientist had the greatest impact on our lives	7. In your opin	ion, which scientist had the greatest impact on our lives
today. Explain	your reasoning	today. Expla	ain your reasoning
	wollescie	ence.com	


Name _	Date
DNA St	ructure
	ete each task using the diagram: Label all the sugar molecules with an S Label the phosphate molecules with a P Circle one nitrogen base Draw a square around 1 nucleotide Highlight the hydrogen bonds Label the nitrogen bases according to the base pair rule using the letters A, G, C, T ands are said to be anti-parallel , based on the picture, what does ean?
determ What d DNA, m	the hereditary information of organisms. What part of DNA nines the traits of an organism? lo you think would happen if there was a small mistake in the naybe a base is paired wrong or missing? the universal genetic code because

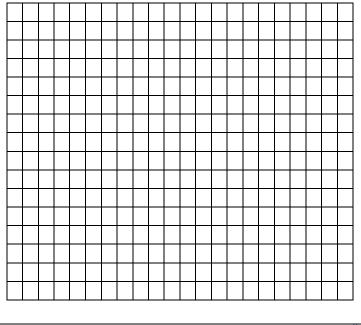

Name	Date
DNA Structure	
	\bigcirc
	$\langle \rangle$
	\bigcirc
Complete each	task using the diagram:
Label a	all the sugar molecules with an S
Label t	he phosphate molecules with a P
	one nitrogen base
	a square around 1 nucleotide
	ht the hydrogen bonds
	he nitrogen bases according to the base pair rule using
	ters A, G, C, T e said to be anti-parallel , based on the picture, what does
	e salu to be anti-parallel , based on the picture, what does
DNA is the here	editary information of organisms. What part of DNA
determines the	e traits of an organism?
	hink would happen if there was a small mistake in the
DNA. maybe a	base is paired wrong or missing?

DNA is the universal genetic code because _

Name Date	Name Date
DNA Replication	DNA Replication
Explain what role each enzyme plays in DNA replication:	Explain what role each enzyme plays in DNA replication:
DNA helicase:	DNA helicase:
• Ligase:	Ligase:
DNA polymerase:	DNA polymerase:
Place the events of DNA replication in order:	Place the events of DNA replication in order:
 DNA polymerase attaches to the primer Okazaki fragments are glued together by ligase DNA helicase breaks the hydrogen bonds and unwinds DNA DNA polymerase adds new nucleotides in a 5' to 3' direction Replication fork forms 	 DNA polymerase attaches to the primer Okazaki fragments are glued together by ligase DNA helicase breaks the hydrogen bonds and unwinds DNA DNA polymerase adds new nucleotides in a 5' to 3' direction Replication fork forms
Label the following on the diagram: DNA polymerase (x2), ligase, helicase, lagging strand, leading strand	Label the following on the diagram: DNA polymerase (x2), ligase, helicase, lagging strand, leading strand
Explain the difference between the lagging and leading strands	Explain the difference between the lagging and leading strands
wallsscier	

Name Date
Genetic Material
Genetic Material is
Describe or sketch each of the following:
DNA CHROMOSOME GENE
Explain the connection between DNA, chromosome, and gene
sscience
Name Date Date
Genetic Material Genetic Material is
Describe or sketch each of the following:
DNA CHROMOSOME GENE
Explain the connection between DNA, chromosome, and gene

Name Date	Name Date
1 itosis	Mitosis
Match the phase to the correct description.	Match the phase to the correct description.
A. TelophaseB. ProphaseC. Anaphase	A. TelophaseB. ProphaseC. Anaphase
 D. Metaphase Chromosomes attach to the spindle fibers and start to line up in the middle of the cell 	 D. Metaphase 1 Chromosomes attach to the spindle fibers and start to line up in the middle of the cell
 2 Two new nuclei start to form, and the chromosomes start to uncoil into chromatin 3 Chromatin condenses into chromosomes as the cell prepares for division 4 The chromatids are split and start to move away from each other to opposite ends of the cell 	 Two new nuclei start to form, and the chromosomes start to uncoil into chromatin Chromatin condenses into chromosomes as the cell prepares for division The chromatids are split and start to move away from each other to opposite ends of the cell
Jse the diagram to put the phases of mitosis in order. The first picture is early prophase and the last is cytokinesis.	Use the diagram to put the phases of mitosis in order. The first picture is early prophase and the last is cytokinesis.
Prophase	Prophase
Metaphase	Metaphase
Anaphase	Anaphase
Telophase	Telophase
represents	X represents
represents	Y represents

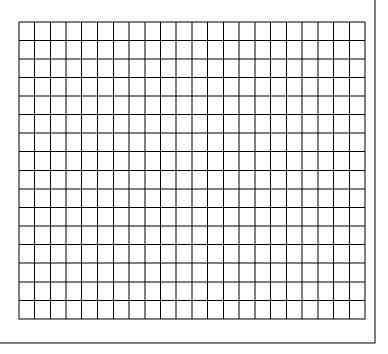

Name Date	Name Date
Limits to Cell Size Bellringer	Limits to Cell Size Bellringer
Calculate the surface area and volume for each cube (you may use your phone as a calculator).	Calculate the surface area and volume for each cube (you may use your phone as a calculator).
Each side = 2 in	Each side = 2 in
SA = L x W x 6 = $x 6 =$	SA= L x W x 6 = x x 6 =
V = L x W x H = $x =$	V = L x W x H = x x =
Each side = 1 in	Each side = 1 in
$SA=L \times W \times 6 = \underline{x} \times 6 = \underline{x}$	$SA = L \times W \times 6 = __x_x 6 = \$
$V = L \times W \times H = \underline{x} \times \underline{x} = \underline{x}$	$V = L \times W \times H = _x_x = = \$
Each side = .5 in	Each side = .5 in
SA = L x W x 6 = x 6 =	SA = L x W x 6 = x 6 =
V = L x W x H = x x =	V = L x W x H = x x =
Calculate the surface area to volume ratio= surface area / volume	Calculate the surface area to volume ratio= surface area / volume
Ratio 2 in cube = / =	Ratio 2 in cube = / =
1 in cube = / =	1 in cube = / =
.5 in cube = / =	.5 in cube = / =
Which cell had the largest surface area to volume ratio?	Which cell had the largest surface area to volume ratio?
Why would having more surface area compared to volume be beneficial to a cell?	Why would having more surface area compared to volume be beneficial to a cell?

Name _____

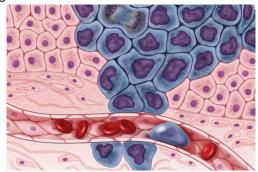
Date _____

Cancer Graphing: Create a bar graph using the data below. Be sure to include a title, labels on the axes, and an evenly spaced scale. Write a summary of the data in the space below.

Top 10 Cancer Rates by Cancer Deaths in 2016		
Cancer Type	Rate per 100,000	
Lung	38.5	
Female Breast	20	
Prostate	19.4	
Colon/Rectum	13.7	
Pancreas	11	
Ovary	6.8	
Liver	6.7	
Leukemias	6.3	
Lymphoma	5.4	
Uterine	5	



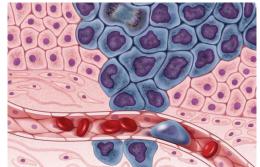
Name _____


Date _____

Cancer Graphing: Create a bar graph using the data below. Be sure to include a title, labels on the axes, and an evenly spaced scale. Write a summary of the data in the space below.

Top 10 Cancer Rates by Cancer		
Deaths in 2016		
Cancer Type	Rate per 100,000	
Lung	38.5	
Female Breast	20	
Prostate	19.4	
Colon/Rectum	13.7	
Pancreas	11	
Ovary	6.8	
Liver	6.7	
Leukemias	6.3	
Lymphoma	5.4	
Uterine	5	

Cancer Reading


Cells do not live forever. They will eventually become damaged and need to be replaced. Some cells will last longer than others, but most will need to be replaced through mitosis at some point. Programmed cell death is known as **apoptosis** and will happen when cells are damaged beyond repair. Apoptosis and mitosis are both controlled through cell signals that are used to control cell activities. These signals help keep the cells functioning correctly in the body.

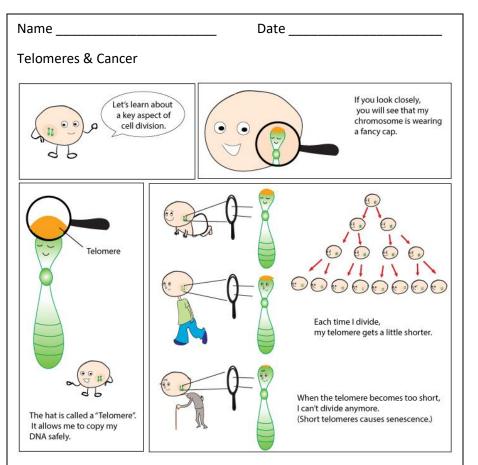
Sometimes cells are damaged by things like **carcinogens**, cancer causing substances, and they continue to divide uncontrollably. These cells ignore normal cell signals that would stop them from growing out of control and this results in cancer. Cancer cells do not have a limited life and will continue to divide as long as they have nutrients. In fact, HeLa cells were collected from a woman named Henrietta Lacks in 1951 and are still used in cancer research today.

Cancer cells do not function like normal cells. Their uncontrolled growth causes **tumors** that can invade the surrounding tissues and crowd out healthy cells. Cancer cells can also enter the bloodstream and travel to other parts of the body. Since cells ignore signals that would cause apoptosis, they can attach to other parts of the body and begin growing. **Metastasis** is when a secondary tumor starts in another area of the body.

Cancer is hard to treat because the cells aren't usually recognized as invaders and the immune system doesn't destroy them. Finding medicine that only targets cancer cells but doesn't damage healthy cells is a challenge that researchers are trying to overcome.

Cancer Reading

Cells do not live forever. They will eventually become damaged and need to be replaced. Some cells will last longer than others, but most will need to be replaced through mitosis at some point. Programmed cell death is known as **apoptosis** and will happen when cells are damaged beyond repair. Apoptosis and mitosis are both controlled through cell signals that are used to control cell activities. These signals help keep the cells functioning correctly in the body.


Sometimes cells are damaged by things like **carcinogens**, cancer causing substances, and they continue to divide uncontrollably. These cells ignore normal cell signals that would stop them from growing out of control and this results in cancer. Cancer cells do not have a limited life and will continue to divide as long as they have nutrients. In fact, HeLa cells were collected from a woman named Henrietta Lacks in 1951 and are still used in cancer research today.

Cancer cells do not function like normal cells. Their uncontrolled growth causes **tumors** that can invade the surrounding tissues and crowd out healthy cells. Cancer cells can also enter the bloodstream and travel to other parts of the body. Since cells ignore signals that would cause apoptosis, they can attach to other parts of the body and begin growing. **Metastasis** is when a secondary tumor starts in another area of the body.

Cancer is hard to treat because the cells aren't usually recognized as invaders and the immune system doesn't destroy them. Finding medicine that only targets cancer cells but doesn't damage healthy cells is a challenge that researchers are trying to overcome.

Name Date	Na	me
Cancer	Cai	ncer
Use the reading to answer the questions.	Use	e the r
1. How would apoptosis be useful in the body?	1.	How
 What are some carcinogens you've heard of? 	2.	What
 Compare and contrast cancer cells and normal cells 	3.	Com
4. Explain metastasis.	4.	Expla
5. What is one type of treatment for cancer?	5.	Wha
6. Many cancer treatments focus on disrupting the division of cancer cells because they are growing out of control. What are some structures that could be destroyed and slow mitosis in the body, but not destroy all cells?	6.	Man cells struc not c
7. If treatments keep all cells from going through mitosis, this would include normal healthy cells. What are some side effects this would cause?	7.	If tre inclu cause

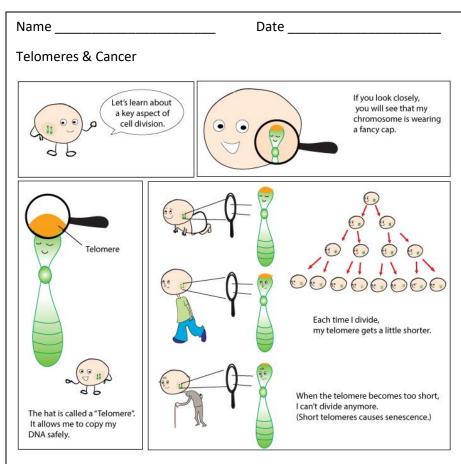

Na	me Date
Cai	ncer
Us	e the reading to answer the questions.
1.	How would apoptosis be useful in the body?
2.	What are some carcinogens you've heard of?
3.	Compare and contrast cancer cells and normal cells.
4.	Explain metastasis.
5.	What is one type of treatment for cancer?
6.	Many cancer treatments focus on disrupting the division of cancer
	cells because they are growing out of control. What are some
	structures that could be destroyed and slow mitosis in the body, but
	not destroy all cells?
7.	If treatments keep all cells from going through mitosis, this would
	include normal healthy cells. What are some side effects this would
	cause?

Figure 4:WassermanLab / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

The picture shows the relationship between mitosis and a section of the chromosome known as a telomere.

Cancer cells are considered to be immortal because they will never stop going through mitosis as long as they have nutrients. Normal cells will stop dividing when the telomere is too short. What do you think causes this difference between normal cells and cancer cells?

Figure 3:WassermanLab / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

The picture shows the relationship between mitosis and a section of the chromosome known as a telomere.

Cancer cells are considered to be immortal because they will never stop going through mitosis as long as they have nutrients. Normal cells will stop dividing when the telomere is too short. What do you think causes this difference between normal cells and cancer cells?