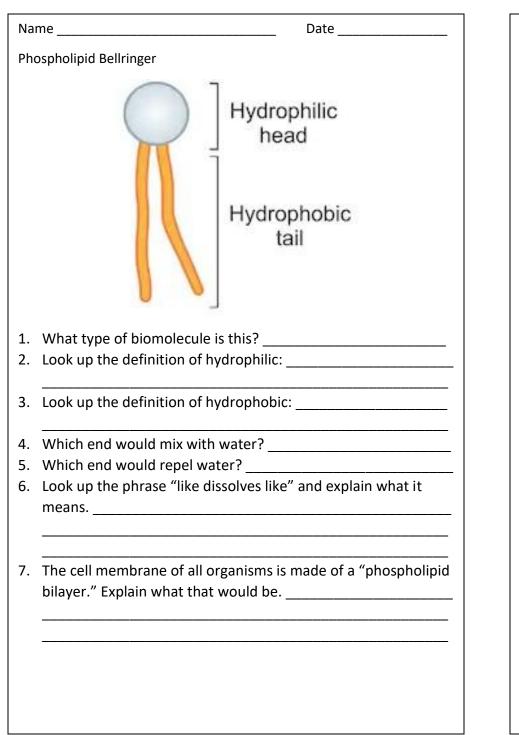
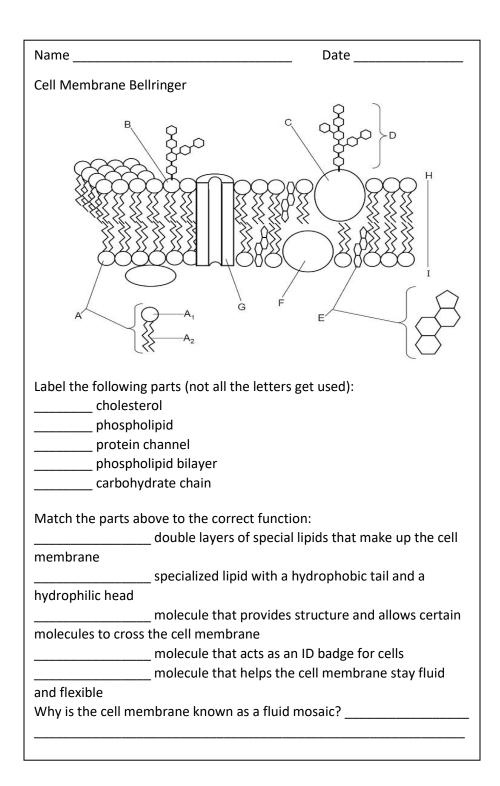
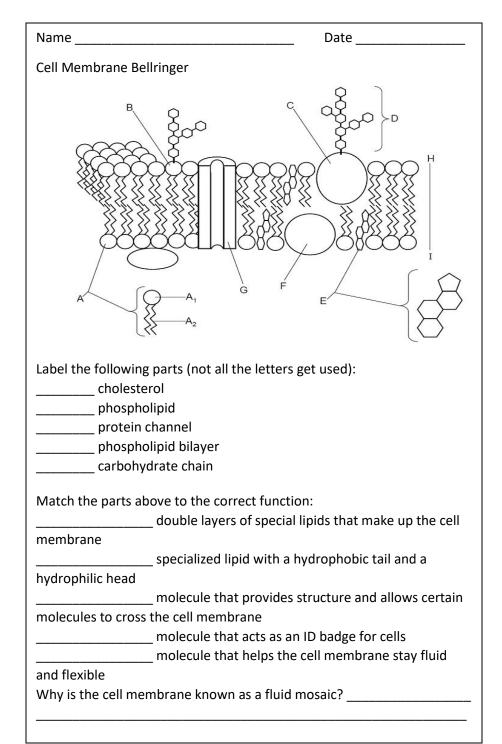


Thank You!


Thank you for downloading this resource from TPT. I appreciate your support. If you would like to contact me with any questions or concerns, feel free to reach out to <u>thewallsscience@gmail.com</u>.


Terms of Use

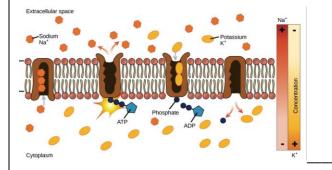

Heather Walls' Terms of Use: By purchasing this product, the purchaser receives a limited individual license to reproduce the product for single classroom use only. The license is not intended for use by organizations or multiple uses including, but not limited to school districts, schools, or multiple teachers within the same content area or grade level. This resource should not be shared with colleagues, used by an entire grade level or content area, or by school district without purchasing the proper number of licenses. No part of this publication may be reproduced, distributed, or transmitted without written permission from the author. This includes posting this product on the internet in any form including class, school, or personal websites or shared networks. Doing so violates the Digital Millennium Copyright Act.

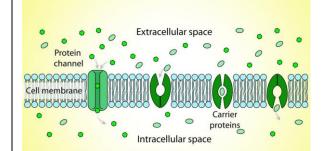
You are welcome to pin this product or share pictures of your students using the product if you include a link back to the original product on TPT.

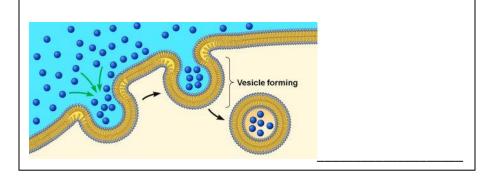
Nai	lame Date	Date					
Pho	hospholipid Bellringer						
	Hydrophilic head Hydrophobic tail						
2.	Look up the definition of hydrophobic: Which end would mix with water? Which end would repel water?						
4. 5. 6.							
7.	. The cell membrane of all organisms is made of a "phospholipid bilayer." Explain what that would be.						

Name Date	Name Date		
Osmosis Bellringer	Osmosis Bellringer		
Watch the video and answer the questions: bit.ly/2FFQn8o	Watch the video and answer the questions: bit.ly/2FFQn8o		
The two eggs in the video have had their shells dissolved in vinegar. This allows the egg to be used as a model for how a cell would change in different solutions.	The two eggs in the video have had their shells dissolved in vinegar. This allows the egg to be used as a model for how a cell would change in different solutions.		
Explain what happens to the egg on the right.	Explain what happens to the egg on the right.		
Explain what happens to the egg on the left	Explain what happens to the egg on the left		
What kind of solution would the egg on the right be in to cause this change?	What kind of solution would the egg on the right be in to cause this change?		
What kind of solution would the egg on the left be in to cause this change?	What kind of solution would the egg on the left be in to cause this change?		
Using what we learned in class, explain the movement of water across a semi-permeable membrane to explain what happened to each egg.	Using what we learned in class, explain the movement of water across a semi-permeable membrane to explain what happened to each egg.		
Match the following terms to the correct definition:	Match the following terms to the correct definition:		
Hypertonic Hypotonic Isotonic	Hypertonic Hypotonic Isotonic		
solution in which the inside of the cell is the same concentration as the outside	solution in which the inside of the cell is the same concentration as the outside		
solution that is more concentrated than the cell	solution that is more concentrated than the cell		
solutions that is less concentrated than the cell	solutions that is less concentrated than the cell		

Name	Date
Osmosis Bellringer	
Concentrated Salt or Sugar solution	Egg Distilled water
	picture have had their shells dissolved in vinegar. to be used as a model for how a cell would change in
Explain what happei	ns to the egg on the right
Explain what happei	ns to the egg on the left
change?	on would the egg on the right be in to cause this
What kind of solutio change?	n would the egg on the left be in to cause this
Using what we learn	ned in class, explain the movement of water across a mbrane to explain what happened to each egg.
	g terms to the correct definition:
Hypertonic	Hypotonic Isotonic solution in which the inside of the cell is the same
concentration as the	
	solution that is more concentrated than the cell solutions that is less concentrated than the cell

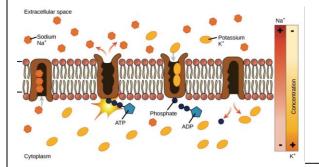

Name	Date						
Osmosis Bellringer							
Concentrated Salt or Sugar solution	Egg Distilled water						
The two eggs in the picture have had their shells dissolved in vinegar. This allows the egg to be used as a model for how a cell would change in different solutions.							
Explain what happens to the egg on the right.							
Explain what happens to the egg on the left							
What kind of solutio change?	n would the egg on the left be in to cause this						
Using what we learn	ned in class, explain the movement of water across a mbrane to explain what happened to each egg.						
Match the following terms to the correct definition: Hypertonic Isotonic solution in which the inside of the cell is the same							
concentration as the							

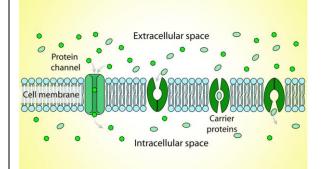

Ν	а	m	P
1 1	a		

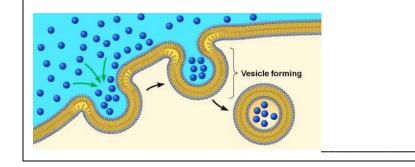

Date _____

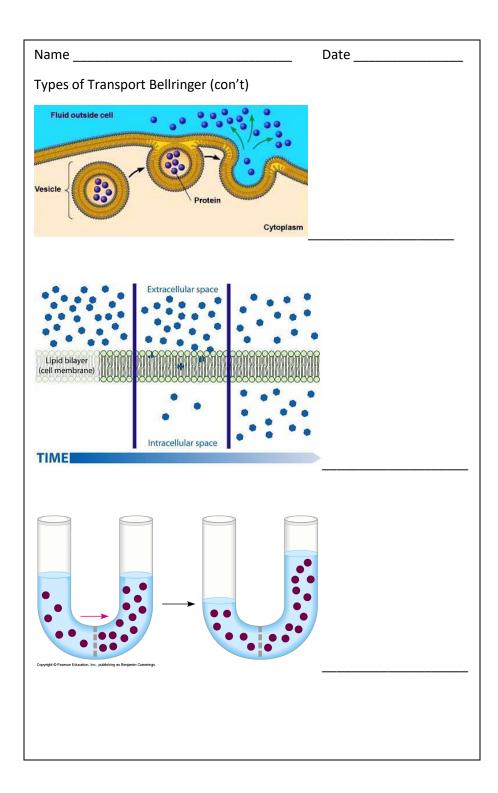
Types of Transport Bellringer

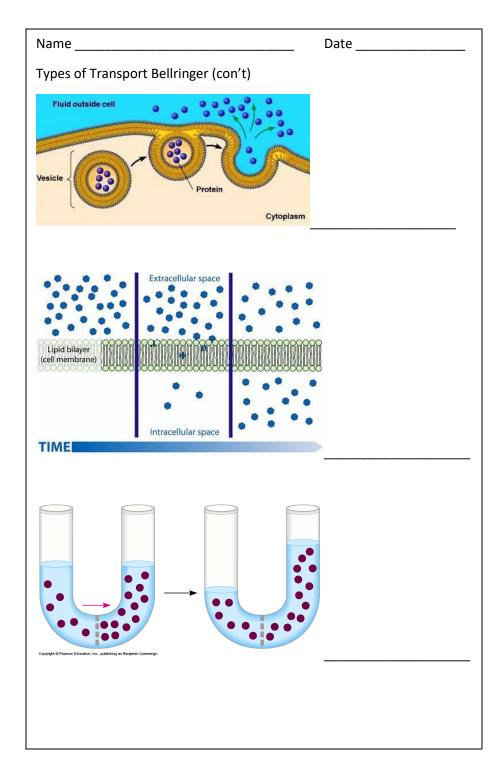
Label each type of transport as: diffusion, osmosis, endocytosis, facilitated diffusion, exocytosis, or a protein pump. Then, add an A for active transport or a P for passive transport.




Name _____


Date _____


Types of Transport Bellringer


Label each type of transport as: diffusion, osmosis, endocytosis, facilitated diffusion, exocytosis, or a protein pump. Then, add an A for active transport or a P for passive transport.

